Zubrag   Notes on understanding the algorithm

1.   The file to be used is zubrag_1b.html and this is also stored on-line at 
http://kesdon.net.

2.    Encoding.
The idea behind the algorithm is quite simple.  After the user has supplied a password (in this case - hint:Ducks!) the ASCII character of each letter of the password is adding to the general counter (in this case, ‘i’ which is ‘pos1’) and is then used to compute a position (‘pos2’).  As the first letter of the password is B, the ASCII code is 66 and this value is then added to the value of the counter (starting at 0)  So ‘pos1’ will be 0 and ‘pos2’ will be 66 + 0 = 66.  The characters in these two positions are simply swapped.  Notice that no information is lost - the two characters are merely in different locations.

3.   The algorithm proceeds this way, character by character, until the end of the file. When the counter comes to the end of the password, it merely starts again from the beginning.  Note that where the index counter (‘i’) and the ASCII character of the password exceed the length of the file, then the ‘continue’ statement is used in the loop which will abort that particular iteration and pass onto the next one.  In this way, it will be possible for characters to be encoded practically to the end of the file.

4.   Decoding.
The variable passnum is used to indicate any particular position within the password.  In the case of a 16 character password, for example, there will be from 1 to 15 characters ‘left over’ at the end of the encoding process.  To find out how many characters this is, the algorithm makes use of the mod (%) function which gives the remainder, as it were.  This is then used as the starting point for the decoding process which is exactly the same as the encoding process except that the loop runs backwards i.e. from the end of the file towards the beginning.  Any characters that were swapped in the encoding process will now be swapped back again.

5.   Power of the algorithm
It is probable that having been swapped for a location further in the file, any particular character will be further swapped and so on - probably several times.
The result is that the resultant code is well and truly scrambled!  Note that no password is stored with the code because in effect the whole of the code has been encrypted with the password.  This makes the algorithm particularly powerful, if not uncrackable.  If you forget the password, then there is no practical way that the password could ever be retrieved.  

6.   Examples
Some trivial examples, including the increase in code size, can be found by following the Zubrag link on http://kesdon.net
zubrag.doc/8 April 2011

