
PROBABILITY

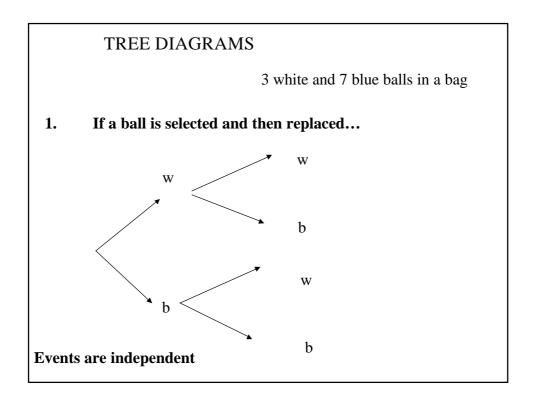
EMPIRICAL: relationship or expectation is found by experiment or use of historical data

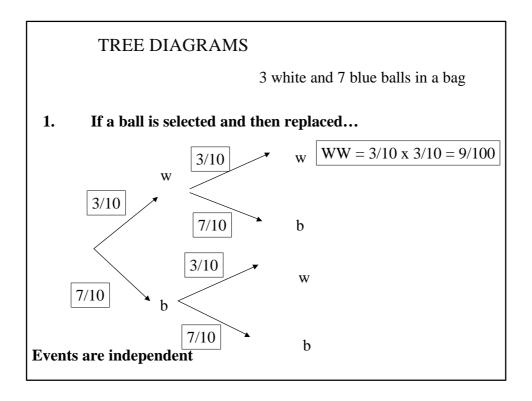
THEORETICAL expectation is found by use of logic, symmetry or listing outcomes

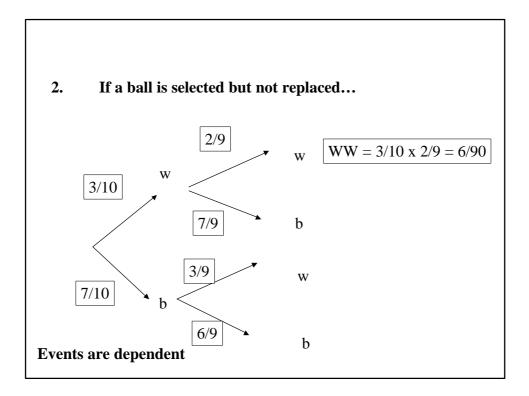
SUBJECTIVE based on belief or judgement of what will happen

A picture or listing outcome	es helps	5					
	stigate			ing t	wo (dice	and
How	v many e?	y po	ossit	ole o	utco	mes	s are
Find the probabilities of throwing:	6 5	•	•	•	•	•	
 a double a total of 10	4	•	•	•	•	•	•
 a double or a total of 10 at least one 6	2 1		•	•	•	•	•
	1	1	2	3	4	5	6

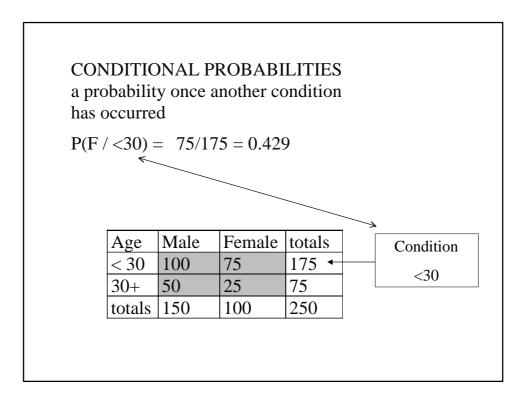
INDEPENDENT, DEPENDENT AND CONDITIONAL PROBABILITIES

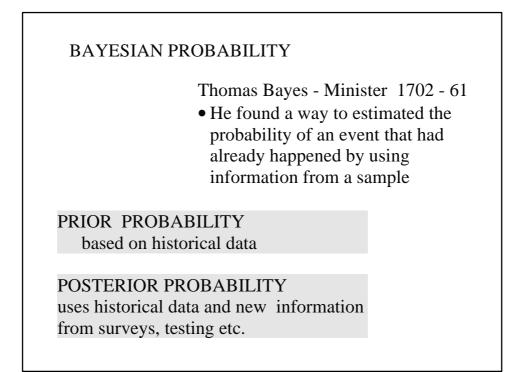

Two events are INDEPENDENT if the occurrence of one is not affected by the occurrence of the other one

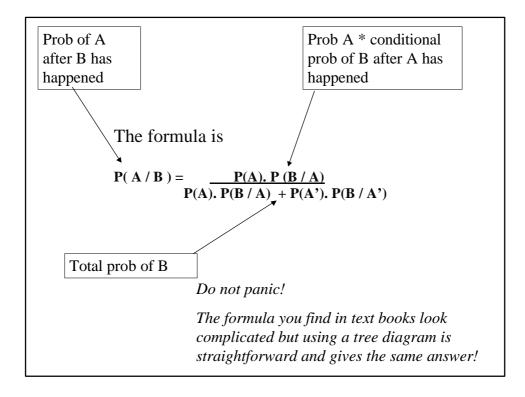

example: throwing a die

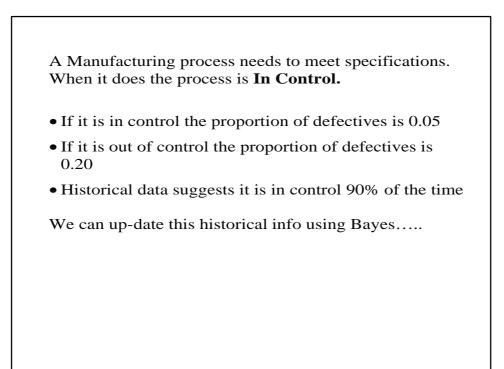

If an event depends on or is affected by what has happened before then the events are DEPENDENT or the second event is CONDITIONAL on the first

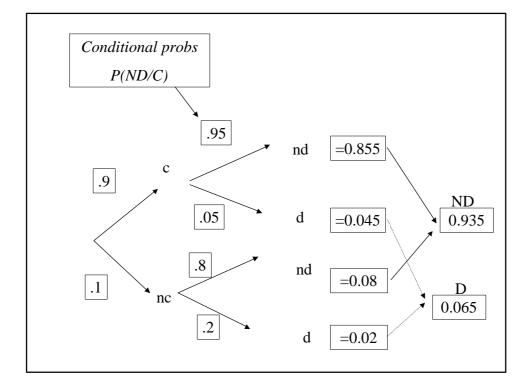
example: passing an exam second go


MULTIPLICATIVE RULES	
If events are independent	
$P(A n B) = P(A) \cdot P(B)$	
e.g: P(two sixes) = P(6) . P(6)	
B/A means B If events are dependent	
once A has happened $P(B/A) = \frac{P(A n B)}{P(A)}$	
e.g: $P(\langle 4 Heart \rangle) = \frac{P(\langle 4 and Heart)}{P(Heart)}$	









Find the percenta about the custome age or gender pro	ers and	dunder	lying tre	nds:	
conditional proba age versus gender e.g. P(30+/ F) an or P(F/<30) and H	r .d P(3()+/M)	or a patt	ern:	
	Age	Male	Female	totals	
	0	100	75	175	
		50	25	75	
	totals	150	100	250	

Sampling:

If you pick out a non-defective item, the probability of the process being in control is:

P(C/ND) = 0.855/0.935 = 0.914 i.e. 91.4%

If you pick out a defective item, the probability of the process being in control is:

P(C/D) = 0.045/0.068 = 0.662 i.e. 66.2%

The Prior probability of 0.9 is up-dated according to sample state

•	llowing data using different probabilities. ationship between age, dress and buying
A probability case study - based on actual data in USA	 12 Up - market fashion stores selling women clothing. These attract many window shoppers and tourists. It would be useful if staff could identify serious buyers. The M.R. thinks that buying pattern is affected by age and dress of the shoppers.

• Data is collected re behaviour of a rand shoppers in one sto	om selecti		
Data O	ne:	under	40
Female	Female buyers		plus
well	buyer	2	8
dressed			
	non-	16	14
	buyer		
casually	/ buyer	34	6
dressed			
	non-	50	70
	buyer		

Data One: Female buyers		under	40 plus	total
		40		
well dressed	buyer	2	8	10
	non-	16	14	30
	buyer			
		18	22	40
casually	buyer	34	6	40
dressed				
	non-	50	70	120
	buyer			
		84	76	160
		102	98	200

The following information comes from the same store, but for male buyers.

Analyse the data using a tree diagram and Bayes.

Who should the shop assistant target?

Male buyers

- form 1/3 rd of customers
- 6 out of 10 made a purchase
- of those who made a purchase 2 out of 10 wore suits
- of those who didn't make a purchase 9 out of 10 were not in a suit